train_sparseinst

train_sparseinst

About

1.1.0
MIT

Train Sparseinst instance segmentation models

Task: Instance segmentation
train
sparse
instance
segmentation
real-time
detectron2

Train Sparseinst instance segmentation models.

Sparseinst instance segmentation baseball game

🚀 Use with Ikomia API

1. Install Ikomia API

We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.

pip install ikomia

2. Create your workflow

from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()    

# Add data loader
coco = wf.add_task(name="dataset_coco")
coco.set_parameters({
    "json_file": "path/to/json/annotation/file",
    "image_folder": "path/to/image/folder",
    "task": "instance_segmentation",
}) 

# Add training algorithm
train = wf.add_task(name="train_sparseinst", auto_connect=True)

# Launch your training on your data
wf.run()

☀️ Use with Ikomia Studio

Ikomia Studio offers a friendly UI with the same features as the API.

  • If you haven't started using Ikomia Studio yet, download and install it from this page.

  • For additional guidance on getting started with Ikomia Studio, check out this blog post.

📝 Set algorithm parameters

  • model_name (str) - default 'sparse_inst_r50_giam_aug': Name of the Sparseinst model. Additional models are available:

    • sparse_inst_r50vd_base
    • sparse_inst_r50_giam
    • sparse_inst_r50_giam_soft
    • sparse_inst_r50_giam_aug
    • sparse_inst_r50_dcn_giam_aug
    • sparse_inst_r50vd_giam_aug
    • sparse_inst_r50vd_dcn_giam_aug
    • sparse_inst_r101_giam
    • sparse_inst_r101_dcn_giam
    • sparse_inst_pvt_b1_giam
    • sparse_inst_pvt_b2_li_giam
  • batch_size (int) - default '8': Number of samples processed before the model is updated.

  • max_iter (int) - default '4000': Maximum number of iterations.

  • eval_period (int) - default '50': Interval between evaluations.

  • dataset_split_ratio (float) – default '0.9': Divide the dataset into train and evaluation sets ]0, 1[.

  • output_folder (str, optional): path to where the model will be saved.

Parameters should be in strings format when added to the dictionary.

from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()    

# Add data loader
coco = wf.add_task(name="dataset_coco")
coco.set_parameters({
    "json_file": "path/to/json/annotation/file",
    "image_folder": "path/to/image/folder",
    "task": "instance_segmentation",
}) 

# Add training algorithm
train = wf.add_task(name="train_sparseinst", auto_connect=True)
train.set_parameters({
    "model_name": "sparse_inst_r50vd_base",
    "batch_size": "4",
    "max_iter": "1000",
    "eval_period": "100",
    "dataset_split_ratio": "0.8",
}) 

# Launch your training on your data
wf.run()

Developer

  • Ikomia
    Ikomia

License

A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

PermissionsConditionsLimitations

Commercial use

License and copyright notice

Liability

Modification

Warranty

Distribution

Private use

This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.