infer_yolop_v2

infer_yolop_v2

About

1.2.1
MIT

Panoptic driving Perception using YoloPv2

Task: Object detectionTask: Instance segmentationTask: Semantic segmentation
YOLOPv2
infer
panoptic
driving
traffic
object detection
segmentation

Run YOLOP_v2 for Panoptic driving Perception. This model detects traffic object detection, drivable area segmentation and lane line detection.

Road object detection

🚀 Use with Ikomia API

1. Install Ikomia API

We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.

pip install ikomia

2. Create your workflow

from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_yolop_v2", auto_connect=True)

# Run on your image
wf.run_on(url="https://www.cnet.com/a/img/resize/4797a22dd672697529df19c2658364a85e0f9eb4/hub/2023/02/14/9406d927-a754-4fa9-8251-8b1ccd010d5a/ring-car-cam-2023-02-14-14h09m20s720.png?auto=webp&width=1920")

# Inpect your result
display(algo.get_image_with_graphics())
display(algo.get_output(0).get_overlay_mask())

☀️ Use with Ikomia Studio

Ikomia Studio offers a friendly UI with the same features as the API.

  • If you haven't started using Ikomia Studio yet, download and install it from this page.

  • For additional guidance on getting started with Ikomia Studio, check out this blog post.

📝 Set algorithm parameters

  • input_size (int) - default '640': Size of the input image.
  • conf_thres (float) default '0.2': Box threshold for the prediction [0,1].
  • iou_thres (float) - default '0.45': Intersection over Union, degree of overlap between two boxes [0,1].
  • object (bool) - default 'True': Detect vehicles.
  • road_lane (bool) - default 'True': Detect road and line.

Parameters should be in strings format when added to the dictionary.

from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_yolop_v2", auto_connect=True)


algo.set_parameters({
"input_size": "640",
"conf_thres": "0.2",
"iou_thres": "0.45",
"object": "True",
"road_lane": "True"
})

# Run on your image
wf.run_on(url="https://www.cnet.com/a/img/resize/4797a22dd672697529df19c2658364a85e0f9eb4/hub/2023/02/14/9406d927-a754-4fa9-8251-8b1ccd010d5a/ring-car-cam-2023-02-14-14h09m20s720.png?auto=webp&width=1920")

# Inpect your result
display(algo.get_image_with_graphics())
display(algo.get_output(0).get_overlay_mask())

🔍 Explore algorithm outputs

Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.

import ikomia
from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_yolop_v2", auto_connect=True)

# Run on your image
wf.run_on(url="https://www.cnet.com/a/img/resize/4797a22dd672697529df19c2658364a85e0f9eb4/hub/2023/02/14/9406d927-a754-4fa9-8251-8b1ccd010d5a/ring-car-cam-2023-02-14-14h09m20s720.png?auto=webp&width=1920")

# Iterate over outputs
for output in algo.get_outputs():
# Print information
print(output)
# Export it to JSON
output.to_json()

Developer

  • Ikomia
    Ikomia

License

A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

PermissionsConditionsLimitations

Commercial use

License and copyright notice

Liability

Modification

Warranty

Distribution

Private use

This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.