infer_torchvision_resnet
About
ResNet inference model for image classification.
ResNet inference model for image classification.
🚀 Use with Ikomia API
1. Install Ikomia API
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
pip install ikomia
2. Create your workflow
-
model_name (str) - default 'resnet18': Name of the pre-trained model. Additional ResNet size are available:
- resnet18
- resnet34
- resnet50
- resnet101
- resnet152
-
input_size (int) - default '224': Size of the input image.
-
model_weight_file (str, optional): Path to model weights file.
-
class_file (str, , optional): Path to text file (.txt) containing class names. (If using a custom model)
Parameters should be in strings format when added to the dictionary.
from ikomia.dataprocess.workflow import Workflowfrom ikomia.utils.displayIO import display# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_torchvision_resnet", auto_connect=True)# Run directly on your imagewf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")# Inspect your resultdisplay(algo.get_image_with_graphics())
☀️ Use with Ikomia Studio
Ikomia Studio offers a friendly UI with the same features as the API.
-
If you haven't started using Ikomia Studio yet, download and install it from this page.
-
For additional guidance on getting started with Ikomia Studio, check out this blog post.
📝 Set algorithm parameters
from ikomia.dataprocess.workflow import Workflowfrom ikomia.utils.displayIO import display# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_torchvision_resnet", auto_connect=True)algo.set_parameters({"model_name": "resnet50","input_size": "224",})# Run directly on your imagewf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")# Inspect your result
🔍 Explore algorithm outputs
Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.
import ikomiafrom ikomia.dataprocess.workflow import Workflow# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_torchvision_resnet", auto_connect=True)# Run on your imagewf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")# Iterate over outputsfor output in algo.get_outputs():# Print informationprint(output)# Export it to JSONoutput.to_json()
Developer
Ikomia
License
BSD 3-Clause "New" or "Revised" License
A permissive license similar to the BSD 2-Clause License, but with a 3rd clause that prohibits others from using the name of the copyright holder or its contributors to promote derived products without written consent.
Permissions | Conditions | Limitations |
---|---|---|
Commercial use | License and copyright notice | Liability |
Modification | Warranty | |
Distribution | ||
Private use |
This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.