pip install ikomia
infer_stable_cascade
About
1.0.0
Custom license
Stable Cascade is a diffusion model trained to generate images given a text prompt.
Stable Cascade is a diffusion model trained to generate images given a text prompt. The Stable Cascade algorithm needs 17 GB of VRAM to run.
🚀 Use with Ikomia API
1. Install Ikomia API
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
2. Create your workflow
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display
# Init your workflow
wf = Workflow()
# Add algorithm
algo = wf.add_task(name = "infer_stable_cascade", auto_connect=False)
# Run directly on your image
wf.run()
# Display the image
display(algo.get_output(0).get_image())
☀️ Use with Ikomia Studio
Ikomia Studio offers a friendly UI with the same features as the API.
- If you haven't started using Ikomia Studio yet, download and install it from this page.
- For additional guidance on getting started with Ikomia Studio, check out this blog post.
📝 Set algorithm parameters
- prompt (str) - default 'Anthropomorphic cat dressed as a pilot' : Text prompt to guide the image generation .
- negative_prompt (str, optional) - default '': The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if
guidance_scale
is less than1
). - prior_num_inference_steps (int) - default '20': Stage B timesteps.
- prior_guidance_scale (float) - default '4.0': Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality. (minimum: 1; maximum: 20).
- num_inference_steps (int) - default '30': Stage C timesteps
- guidance_scale (float) - default '0.0': Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality. (minimum: 1; maximum: 20).
- height (int) - default '1024': The height in pixels of the generated image.
- width (int) - default '1024': The width in pixels of the generated image.
- num_images_per_prompt (int) - default '1': Number of generated image(s).
- seed (int) - default '-1': Seed value. '-1' generates a random number between 0 and 191965535.
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display
# Init your workflow
wf = Workflow()
# Add algorithm
algo = wf.add_task(name = "infer_stable_cascade", auto_connect=False)
algo.set_parameters({
'prompt': 'Anthropomorphic cat dressed as a pilot',
'negative_prompt': '',
'prior_num_inference_steps': '20',
'prior_guidance_scale': '4.0',
'num_inference_steps': '30',
'guidance_scale': '0.0',
'seed': '-1',
'width': '1024',
'height': '1024',
'num_images_per_prompt':'1',
})
# Generate your image
wf.run()
# Display the image
display(algo.get_output(0).get_image())
🔍 Explore algorithm outputs
Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.
from ikomia.dataprocess.workflow import Workflow
# Init your workflow
wf = Workflow()
# Add algorithm
algo = wf.add_task(name="infer_stable_cascade", auto_connect=False)
# Run
wf.run()
# Iterate over outputs
for output in algo.get_outputs():
# Print information
print(output)
# Export it to JSON
output.to_json()
Developer
Ikomia