infer_stable_cascade
About
1.0.0
Custom license
Stable Cascade is a diffusion model trained to generate images given a text prompt.
Stable Cascade is a diffusion model trained to generate images given a text prompt. The Stable Cascade algorithm needs 17 GB of VRAM to run.
🚀 Use with Ikomia API
1. Install Ikomia API
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
pip install ikomia
2. Create your workflow
from ikomia.dataprocess.workflow import Workflowfrom ikomia.utils.displayIO import display# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name = "infer_stable_cascade", auto_connect=False)# Run directly on your imagewf.run()# Display the imagedisplay(algo.get_output(0).get_image())
☀️ Use with Ikomia Studio
Ikomia Studio offers a friendly UI with the same features as the API.
- If you haven't started using Ikomia Studio yet, download and install it from this page.
- For additional guidance on getting started with Ikomia Studio, check out this blog post.
📝 Set algorithm parameters
- prompt (str) - default 'Anthropomorphic cat dressed as a pilot' : Text prompt to guide the image generation .
- negative_prompt (str, optional) - default '': The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if
guidance_scale
is less than1
). - prior_num_inference_steps (int) - default '20': Stage B timesteps.
- prior_guidance_scale (float) - default '4.0': Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality. (minimum: 1; maximum: 20).
- num_inference_steps (int) - default '30': Stage C timesteps
- guidance_scale (float) - default '0.0': Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality. (minimum: 1; maximum: 20).
- height (int) - default '1024': The height in pixels of the generated image.
- width (int) - default '1024': The width in pixels of the generated image.
- num_images_per_prompt (int) - default '1': Number of generated image(s).
- seed (int) - default '-1': Seed value. '-1' generates a random number between 0 and 191965535.
from ikomia.dataprocess.workflow import Workflowfrom ikomia.utils.displayIO import display# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name = "infer_stable_cascade", auto_connect=False)algo.set_parameters({'prompt': 'Anthropomorphic cat dressed as a pilot','negative_prompt': '','prior_num_inference_steps': '20','prior_guidance_scale': '4.0','num_inference_steps': '30','guidance_scale': '0.0','seed': '-1','width': '1024','height': '1024','num_images_per_prompt':'1',})# Generate your imagewf.run()# Display the imagedisplay(algo.get_output(0).get_image())
🔍 Explore algorithm outputs
Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.
from ikomia.dataprocess.workflow import Workflow# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_stable_cascade", auto_connect=False)# Runwf.run()# Iterate over outputsfor output in algo.get_outputs():# Print informationprint(output)# Export it to JSONoutput.to_json()
Developer
Ikomia