pip install ikomia
infer_sparseinst
About
Infer Sparseinst instance segmentation models
Run Sparseinst instance segmentation models.
🚀 Use with Ikomia API
1. Install Ikomia API
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
2. Create your workflow
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display
# Init your workflow
wf = Workflow()
# Add algorithm
algo = wf.add_task(name="infer_sparseinst", auto_connect=True)
# Run on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")
# Inpect your result
display(algo.get_image_with_mask_and_graphics())
☀️ Use with Ikomia Studio
Ikomia Studio offers a friendly UI with the same features as the API.
-
If you haven't started using Ikomia Studio yet, download and install it from this page.
-
For additional guidance on getting started with Ikomia Studio, check out this blog post.
📝 Set algorithm parameters
-
model_name (str) - default 'sparse_inst_r50_giam_aug': Name of the Sparseinst model. Additional models are available:
- sparse_inst_r50vd_base
- sparse_inst_r50_giam
- sparse_inst_r50_giam_soft
- sparse_inst_r50_giam_aug
- sparse_inst_r50_dcn_giam_aug
- sparse_inst_r50vd_giam_aug
- sparse_inst_r50vd_dcn_giam_aug
- sparse_inst_r101_giam
- sparse_inst_r101_dcn_giam
- sparse_inst_pvt_b1_giam
- sparse_inst_pvt_b2_li_giam
-
conf_thres (float) default '0.5': Confidence threshold for the prediction [0,1]
-
config_file (str, optional): Path to the .yaml config file.
-
model_weight_file (str, optional): Path to model weights file .pth.
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display
# Init your workflow
wf = Workflow()
# Add algorithm
algo = wf.add_task(name="infer_sparseinst", auto_connect=True)
algo.set_parameters({
"model_name": "sparse_inst_r50_giam",
"conf_thres": "0.5",
})
# Run on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")
# Inpect your result
display(algo.get_image_with_mask_and_graphics())
🔍 Explore algorithm outputs
Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.
import ikomia
from ikomia.dataprocess.workflow import Workflow
# Init your workflow
wf = Workflow()
# Add algorithm
algo = wf.add_task(name="infer_sparseinst", auto_connect=True)
# Run on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")
# Iterate over outputs
for output in algo.get_outputs():
# Print information
print(output)
# Export it to JSON
output.to_json()
Developer
Ikomia
License
MIT License
A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.
Permissions | Conditions | Limitations |
---|---|---|
Commercial use | License and copyright notice | Liability |
Modification | Warranty | |
Distribution | ||
Private use |
This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.