infer_mmlab_detection
About
Inference for MMDET from MMLAB detection models
Run object detection and instance segmentation algorithms from MMLAB framework.
Models will come from MMLAB's model zoo if custom training is disabled. If not, you can choose to load your model trained with algorithm train_mmlab_detection from Ikomia HUB. In this case, make sure to set parameters for config file (.py) and model file (.pth). Both of these files are produced by the train algorithm.
🚀 Use with Ikomia API
1. Install Ikomia API
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
pip install ikomia
2. Create your workflow
from ikomia.core import IODataTypefrom ikomia.dataprocess.workflow import Workflowfrom ikomia.utils.displayIO import display# Init your workflowwf = Workflow()# Add object detection algorithmdetector = wf.add_task(name="infer_mmlab_detection", auto_connect=True)# Run the workflow on imagewf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_mmlab_detection/main/images/work.jpg")# Get and display resultsimage_output = detector.get_output(0)detection_output = detector.get_output(1)# MMLab detection framework mixes object detection and instance segmentation algorithmsif detection_output.data_type == IODataType.OBJECT_DETECTION:display(image_output.get_image_with_graphics(detection_output), title="MMLAB detection")elif detection_output.data_type == IODataType.INSTANCE_SEGMENTATION:display(image_output.get_image_with_mask_and_graphics(detection_output), title="MMLAB detection")
☀️ Use with Ikomia Studio
Ikomia Studio offers a friendly UI with the same features as the API.
-
If you haven't started using Ikomia Studio yet, download and install it from this page.
-
For additional guidance on getting started with Ikomia Studio, check out this blog post.
📝 Set algorithm parameters
from ikomia.dataprocess.workflow import Workflow# Init your workflowwf = Workflow()# Add object detection algorithmdetector = wf.add_task(name="infer_mmlab_detection", auto_connect=True)detector.set_parameters({"model_name": "yolox","model_config": "yolox_s_8x8_300e_coco","conf_thres": "0.5","use_custom_model": "False","config_file": "","model_weight_file": "","cuda": "True",})# Run the workflow on imagewf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_mmlab_detection/main/images/work.jpg")
- model_name (str, default="yolox"): model name.
- model_config (str, default="yolox_s_8x8_300e_coco"): name of the model configuration file.
- conf_thres (float, default=0.5): object detection confidence.
- use_custom_model (bool, default=False): flag to enable the custom train model choice.
- config_file (str, default=""): path to model config file (only if use_custom_model=True). The file is generated at the end of a custom training. Use algorithm train_mmlab_detection from Ikomia HUB to train custom model.
- model_weight_file (str, default=""): path to model weights file (.pt) (only if use_custom_model=True). The file is generated at the end of a custom training.
- cuda (bool, default=True): CUDA acceleration if True, run on CPU otherwise.
MMLab framework for object detection and instance segmentation offers a large range of models. To ease the choice of couple (model_name/model_config), you can call the function get_model_zoo() to get a list of possible values.
from ikomia.dataprocess.workflow import Workflow# Init your workflowwf = Workflow()# Add object detection algorithmdetector = wf.add_task(name="infer_mmlab_detection", auto_connect=True)# Get list of possible models (model_name, model_config)print(detector.get_model_zoo())
🔍 Explore algorithm outputs
Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.
from ikomia.dataprocess.workflow import Workflow# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_mmlab_detection", auto_connect=True)# Run the workflow on imagewf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_mmlab_detection/main/images/work.jpg")# Iterate over outputsfor output in algo.get_outputs():# Print informationprint(output)# Export it to JSONoutput.to_json()
MMLab detection algorithm generates 2 outputs:
- Forwaded original image (CImageIO)
- Object detection output (CObjectDetectionIO) or instance segmentation output (CInstanceSegmentationIO): this output type is set dynamically depending on the model.
Developer
Ikomia
License
Apache License 2.0
A permissive license whose main conditions require preservation of copyright and license notices. Contributors provide an express grant of patent rights. Licensed works, modifications, and larger works may be distributed under different terms and without source code.
Permissions | Conditions | Limitations |
---|---|---|
Commercial use | License and copyright notice | Trademark use |
Modification | State changes | Liability |
Distribution | Warranty | |
Patent use | ||
Private use |
This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.