infer_hf_stable_diffusion_inpaint

infer_hf_stable_diffusion_inpaint

About

1.1.4
MIT

Stable diffusion inpainting models from Hugging Face.

Task: Inpainting
Stable Diffusion
Inpainting
Huggingface
Stability-AI

This algorithm proposes inference for stable diffusion inpainting using diffusion models from Hugging Face.

Stable diffusion

🚀 Use with Ikomia API

1. Install Ikomia API

We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.

pip install ikomia

2. Create your workflow

from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()


sam  = wf.add_task(name = "infer_segment_anything", auto_connect=True)

sam.set_parameters({'model_name':'vit_b',
                    'input_box':'[204.8, 221.8, 769.7, 928.5]'
})

sd_inpaint = wf.add_task(name = "infer_hf_stable_diffusion_inpaint", auto_connect=True)

sd_inpaint.set_parameters({'prompt' :'dog, high resolution'})

# Run directly on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")

# Inspect your result
display(sam.get_image_with_mask())
display(sd_inpaint.get_output(0).get_image())

☀️ Use with Ikomia Studio

Ikomia Studio offers a friendly UI with the same features as the API.

  • If you haven't started using Ikomia Studio yet, download and install it from this page.

  • For additional guidance on getting started with Ikomia Studio, check out this blog post.

📝 Set algorithm parameters

  • model_name (str) - default 'stabilityai/stable-diffusion-2-inpainting': Name of the stable diffusion model. Other model available: 'runwayml/stable-diffusion-inpainting'
  • prompt (str): Input prompt.
  • negative_prompt (str, optional): The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).
  • num_inference_steps (int) - default '50': Number of denoising steps (minimum: 1; maximum: 500).
  • guidance_scale (float) - default '7.5': Scale for classifier-free guidance (minimum: 1; maximum: 20).
  • num_images_per_prompt (int) - default '1': Number of output.
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()


sam  = wf.add_task(name = "infer_segment_anything", auto_connect=True)

sam.set_parameters({
        'model_name':'vit_b',         
        'input_box':'[204.8, 221.8, 769.7, 928.5]',                 
})

sd_inpaint = wf.add_task(name = "infer_hf_stable_diffusion_inpaint", auto_connect=True)

sd_inpaint.set_parameters({
                'prompt' :'dog, high resolution',
                'negative_prompt':'low quality',
                'num_inference_steps':'100',
                'guidance_scale':'7.5',
                'num_images_per_prompt':'1',
})

# Run directly on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")

# Inspect your result
display(sam.get_image_with_mask())
display(sd_inpaint.get_output(0).get_image())

🔍 Explore algorithm outputs

Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.

import ikomia
from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()

# Add algorithm
sam  = wf.add_task(name = "infer_segment_anything", auto_connect=True)

sam.set_parameters({'model_name':'vit_b',
                    'input_box':'[204.8, 221.8, 769.7, 928.5]',
                    
})
sd_inpaint = wf.add_task(name = "infer_hf_stable_diffusion_inpaint", auto_connect=True)

sd_inpaint.set_parameters({'prompt' :'dog, high resolution'})

# Run on your image  
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")

# Iterate over outputs
for output in sd_inpaint.get_outputs():
    # Print information
    print(output)
    # Export it to JSON
    output.to_json()

Advanced usage

Inpainting can be done from a graphic input (e.g. with Ikomia STUDIO), a semantic segmantation or a instance segmenation mask. For more information on the infer_stable_diffusion_inpaint algorithm check out the blog post Easy stable diffusion inpainting with Segment Anything Model (SAM).

Developer

  • Ikomia
    Ikomia

License

A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

PermissionsConditionsLimitations

Commercial use

License and copyright notice

Liability

Modification

Warranty

Distribution

Private use

This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.