pip install ikomia
infer_hf_stable_diffusion_inpaint
About
Stable diffusion inpainting models from Hugging Face.
This algorithm proposes inference for stable diffusion inpainting using diffusion models from Hugging Face.
🚀 Use with Ikomia API
1. Install Ikomia API
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
2. Create your workflow
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display
# Init your workflow
wf = Workflow()
sam = wf.add_task(name = "infer_segment_anything", auto_connect=True)
sam.set_parameters({'model_name':'vit_b',
'input_box':'[204.8, 221.8, 769.7, 928.5]'
})
sd_inpaint = wf.add_task(name = "infer_hf_stable_diffusion_inpaint", auto_connect=True)
sd_inpaint.set_parameters({'prompt' :'dog, high resolution'})
# Run directly on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")
# Inspect your result
display(sam.get_image_with_mask())
display(sd_inpaint.get_output(0).get_image())
☀️ Use with Ikomia Studio
Ikomia Studio offers a friendly UI with the same features as the API.
-
If you haven't started using Ikomia Studio yet, download and install it from this page.
-
For additional guidance on getting started with Ikomia Studio, check out this blog post.
📝 Set algorithm parameters
- model_name (str) - default 'stabilityai/stable-diffusion-2-inpainting': Name of the stable diffusion model. Other model available: 'runwayml/stable-diffusion-inpainting'
- prompt (str): Input prompt.
- negative_prompt (str, optional): The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if
guidance_scale
is less than1
). - num_inference_steps (int) - default '50': Number of denoising steps (minimum: 1; maximum: 500).
- guidance_scale (float) - default '7.5': Scale for classifier-free guidance (minimum: 1; maximum: 20).
- num_images_per_prompt (int) - default '1': Number of output.
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display
# Init your workflow
wf = Workflow()
sam = wf.add_task(name = "infer_segment_anything", auto_connect=True)
sam.set_parameters({
'model_name':'vit_b',
'input_box':'[204.8, 221.8, 769.7, 928.5]',
})
sd_inpaint = wf.add_task(name = "infer_hf_stable_diffusion_inpaint", auto_connect=True)
sd_inpaint.set_parameters({
'prompt' :'dog, high resolution',
'negative_prompt':'low quality',
'num_inference_steps':'100',
'guidance_scale':'7.5',
'num_images_per_prompt':'1',
})
# Run directly on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")
# Inspect your result
display(sam.get_image_with_mask())
display(sd_inpaint.get_output(0).get_image())
🔍 Explore algorithm outputs
Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.
import ikomia
from ikomia.dataprocess.workflow import Workflow
# Init your workflow
wf = Workflow()
# Add algorithm
sam = wf.add_task(name = "infer_segment_anything", auto_connect=True)
sam.set_parameters({'model_name':'vit_b',
'input_box':'[204.8, 221.8, 769.7, 928.5]',
})
sd_inpaint = wf.add_task(name = "infer_hf_stable_diffusion_inpaint", auto_connect=True)
sd_inpaint.set_parameters({'prompt' :'dog, high resolution'})
# Run on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_cat.jpg")
# Iterate over outputs
for output in sd_inpaint.get_outputs():
# Print information
print(output)
# Export it to JSON
output.to_json()
⏩ Advanced usage
Inpainting can be done from a graphic input (e.g. with Ikomia STUDIO), a semantic segmantation or a instance segmenation mask. For more information on the infer_stable_diffusion_inpaint algorithm check out the blog post Easy stable diffusion inpainting with Segment Anything Model (SAM).
Developer
Ikomia
License
MIT License
A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.
Permissions | Conditions | Limitations |
---|---|---|
Commercial use | License and copyright notice | Liability |
Modification | Warranty | |
Distribution | ||
Private use |
This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.