infer_finegrain_segmenter

infer_finegrain_segmenter

About

1.0.0
MIT

Finegrain object segmenter and background removal

Task: Image matting
remove
background
object
segmenter

This algorithm proposes inference to do object segmentation or remove image background. It is based on the Finegrain refiners library.

Illustration image

🚀 Use with Ikomia API

1. Install Ikomia API

We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.

pip install ikomia

2. Create your workflow

from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()

# Add the real_esrgan algorithm
algo = wf.add_task(name='infer_finegrain_segmenter', auto_connect=True)

# Run on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_portrait.jpg")

# Inspect your results
display(algo.get_input(0).get_image())
display(algo.get_output(1).get_image())

☀️ Use with Ikomia Studio

Ikomia Studio offers a friendly UI with the same features as the API.

  • If you haven't started using Ikomia Studio yet, download and install it from this page.
  • For additional guidance on getting started with Ikomia Studio, check out this blog post.

📝 Set algorithm parameters

  • cuda: enable/disable cuda acceleration (if available)

Please note that the algorithm can take graphics input (e.g. box) to do object segmentation. You have to set a valid CGraphicsInput (see documentation here)

from ikomia.core import CGraphicsRectangle
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_finegrain_segmenter", auto_connect=True)

algo.set_parameters({
"cuda": "True",
})

# Add box prompt for object segmentation: format (x, y, with, height)
graphics_in = algo.get_input(1)
graphics_in.set_items([CGraphicsRectangle(430, 50, 960, 650)])

# Run on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_portrait.jpg")

# Inspect your results
display(algo.get_input(0).get_image())
display(algo.get_output(1).get_image())

🔍 Explore algorithm outputs

Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.

from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_finegrain_segmenter", auto_connect=True)

# Run on your image
wf.run_on(url="https://raw.githubusercontent.com/Ikomia-dev/notebooks/main/examples/img/img_portrait.jpg")

# Iterate over outputs
for output in algo.get_outputs():
# Print information
print(output)
# Export it to JSON
output.to_json()

Developer

  • Ikomia
    Ikomia

License

A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

PermissionsConditionsLimitations

Commercial use

License and copyright notice

Liability

Modification

Warranty

Distribution

Private use

This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.