infer_depth_anything_v2

infer_depth_anything_v2

About

1.0.0
Apache-2.0

Depth Anything V2 is a highly practical solution for robust monocular depth estimation

Task: OTHER
Depth Estimation
Pytorch
HuggingFace
map

Depth Anything V2, significantly outperforms V1, is a highly practical solution for robust monocular depth estimation.

🚀 Use with Ikomia API

1. Install Ikomia API

We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.

pip install ikomia

2. Create your workflow

from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_depth_anything_v2", auto_connect=True)

# Run directly on your image
wf.run_on(url="https://github.com/Ikomia-dev/notebooks/blob/main/examples/img/img_dog.png?raw=true")

# Display the results
display(algo.get_output(0).get_image()) # Colormap
display(algo.get_output(1).get_image()) # Grayscale

☀️ Use with Ikomia Studio

Ikomia Studio offers a friendly UI with the same features as the API.

  • If you haven't started using Ikomia Studio yet, download and install it from this page.
  • For additional guidance on getting started with Ikomia Studio, check out this blog post.

📝 Set algorithm parameters

  • model_name (str) - default 'vits': Name of the ViT pre-trained model.
    • 'vits' ; Param: 24.8M
    • 'vitm' ; Param: 97.5M
    • 'vitl' ; Param: 335.3M
  • input_size (str) - default '640': Size of the input image.
  • cuda (bool): If True, CUDA-based inference (GPU). If False, run on CPU.
from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_depth_anything_v2", auto_connect=True)

algo.set_parameters({
        'model_name':'vits',
        'input_size': '640',
        'cuda': 'True'})

# Run directly on your image
wf.run_on(url="https://github.com/Ikomia-dev/notebooks/blob/main/examples/img/img_dog.png?raw=true")

# Display the results
display(algo.get_output(0).get_image())
display(algo.get_output(1).get_image())

🔍 Explore algorithm outputs

Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.

from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_depth_anything", auto_connect=True)

# Run on your image  
wf.run_on(url="https://github.com/Ikomia-dev/notebooks/blob/main/examples/img/img_dog.png?raw=true")

# Iterate over outputs
for output in algo.get_outputs():
    # Print information
    print(output)
    # Export it to JSON
    output.to_json()

Developer

  • Ikomia
    Ikomia

License

Apache License 2.0
Read license full text

A permissive license whose main conditions require preservation of copyright and license notices. Contributors provide an express grant of patent rights. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

PermissionsConditionsLimitations

Commercial use

License and copyright notice

Trademark use

Modification

State changes

Liability

Distribution

Warranty

Patent use

Private use

This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.