infer_colorful_image_colorization

infer_colorful_image_colorization

About

1.2.0
BSD-2-Clause

Automatic colorization of grayscale image based on neural network.

Task: Colorization
deep
learning
caffe
CNN
photo

This algorithm enables the colorization of grayscale images using neural networks.

input output colorization

🚀 Use with Ikomia API

1. Install Ikomia API

We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.

pip install ikomia

2. Create your workflow

from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_colorful_image_colorization", auto_connect=True)

# Run on your image
wf.run_on(url="https://github.com/sczhou/CodeFormer/blob/master/inputs/gray_faces/Hepburn02.png?raw=true")

display(algo.get_input(0).get_image())
display(algo.get_output(0).get_image())

☀️ Use with Ikomia Studio

Ikomia Studio offers a friendly UI with the same features as the API.

  • If you haven't started using Ikomia Studio yet, download and install it from this page.

  • For additional guidance on getting started with Ikomia Studio, check out this blog post.

📝 Set algorithm parameters

  • backend (str) – default 'Default': Select run backend: "Default", Halide", "Inference engine", "OpenCV", "VKCOM", "CUDA".

  • target (str) – default 'CPU': Select run target "CPU", "OpenCL FP32", "OpenCL FP16", "MYRIAD", "VULKAN", "FPGA", "CUDA FP32", "CUDA FP16".

from ikomia.dataprocess.workflow import Workflow
from ikomia.utils.displayIO import display

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_colorful_image_colorization", auto_connect=True)

algo.set_parameters({
"backend": "Default",
"target": "CPU",
})

# Run on your image
wf.run_on(url="https://github.com/sczhou/CodeFormer/blob/master/inputs/gray_faces/Hepburn02.png?raw=true")

# Inspect your results
display(algo.get_input(0).get_image())
display(algo.get_output(0).get_image())

🔍 Explore algorithm outputs

Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.

import ikomia
from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="infer_colorful_image_colorization", auto_connect=True)

# Run on your image
wf.run_on(url="https://github.com/sczhou/CodeFormer/blob/master/inputs/gray_faces/Hepburn02.png?raw=true")

# Iterate over outputs
for output in algo.get_outputs():
# Print information
print(output)
# Export it to JSON
output.to_json()

Developer

  • Ikomia
    Ikomia

License

BSD 2-Clause "Simplified" License
Read license full text

A permissive license that comes in two variants, the BSD 2-Clause and BSD 3-Clause. Both have very minute differences to the MIT license.

PermissionsConditionsLimitations

Commercial use

License and copyright notice

Liability

Modification

Warranty

Distribution

Private use

This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.