train_mmlab_text_detection

train_mmlab_text_detection

About

1.0.0
Apache-2.0

Training process for MMOCR from MMLAB in text detection

Task: OCR
mmlab
mmocr
text
detection
pytorch
dbnet
mask-rcnn
textsnake

Train text detection models from MMLAB.

example

🚀 Use with Ikomia API

1. Install Ikomia API

We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.

pip install ikomia

2. Create your workflow

To try this code snippet, you can download and extract from wildreceipt. Then make sure you fill the parameter dataset_folder correctly.

from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()

# Add text recognition dataset
dataset = wf.add_task(name="dataset_wildreceipt", auto_connect=False)

# Set dataset parameters
dataset.set_parameters({'dataset_folder': "/path/to/dataset/folder"})

# Add train algorithm
train = wf.add_task(name="train_mmlab_text_detection", auto_connect=True)

# Set train algorithm parameters
train.set_parameters({'model_name': 'dbnetpp',
'cfg': 'dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015',
'epochs': '10',
'batch_size': '2'})

# Launch training
wf.run()

☀️ Use with Ikomia Studio

Ikomia Studio offers a friendly UI with the same features as the API.

  • If you haven't started using Ikomia Studio yet, download and install it from this page.

  • For additional guidance on getting started with Ikomia Studio, check out this blog post.

📝 Set algorithm parameters

  • model_name (str, default="dbnet"): name of pretrained model.
  • cfg (str, default="dbnet_resnet18_fpnc_1200e_icdar2015.py"): filename of pretrained model's config.

model_name and cfg work by pair. You can print the available possibilities with this code snippet:

from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="train_mmlab_text_detection")

# Get model zoo and print it
model_zoo = algo.get_model_zoo()
print(model_zoo)

# Set parameters with the first model of the list
algo.set_parameters(model_zoo[0])
  • epochs (int, default=10): number of complete passes through the training dataset.
  • batch_size (int, default=4): number of samples processed before the model is updated.
  • dataset_split_ratio (int, default=90): in percentage, divide the dataset into train and evaluation sets ]0, 100[.
  • output_folder (str): path to where the model will be saved. Default folder is "runs/" in the algorithm directory.
  • eval_period (int, default=1): interval between evaluations.
  • dataset_folder (str): path to where the dataset compatible with mmlab is stored. Default folder is "/dataset" in the algorithm directory.
  • expert_mode (bool, default=False): set to True only if you know how mmlab works. Then you can set all the parameters in the mmlab config system and it will override every other parameters above.
  • config_file (str, default=""): path to the .py config file. Only for custom models.
  • model_weight_file (str, default=""): path to the .pth weight file. Only for custom models.

Note: parameter key and value should be in string format when added to the dictionary.

from ikomia.dataprocess.workflow import Workflow

# Init your workflow
wf = Workflow()

# Add algorithm
algo = wf.add_task(name="train_mmlab_text_detection", auto_connect=True)

algo.set_parameters({
"model_name": "dbnetpp",
"cfg": "dbnetpp_resnet50_fpnc_1200e_icdar2015.py",
"epochs": "20",
"batch_size": "2",
"eval_period": "2",
"dataset_split_ratio": "90",
"output_folder": "/out",
"dataset_folder": "/dataset",
"export_mode": "False",
"config_file": "",
"model_weight_file": ""
})

# Continue your workflow

Developer

  • Ikomia
    Ikomia

License

Apache License 2.0
Read license full text

A permissive license whose main conditions require preservation of copyright and license notices. Contributors provide an express grant of patent rights. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

PermissionsConditionsLimitations

Commercial use

License and copyright notice

Trademark use

Modification

State changes

Liability

Distribution

Warranty

Patent use

Private use

This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.