infer_mmlab_text_detection
About
Inference for MMOCR from MMLAB text detection models
Run text detection models from MMLAB.
🚀 Use with Ikomia API
1. Install Ikomia API
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
pip install ikomia
2. Create your workflow
from ikomia.dataprocess.workflow import Workflowfrom ikomia.utils.displayIO import display# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_mmlab_text_detection", auto_connect=True)# Run on your imagewf.run_on(url="https://discuss.poynt.net/uploads/default/original/2X/6/60c4199364474569561cba359d486e6c69ae8cba.jpeg")# Get resultsoriginal_image_output = algo.get_output(0)text_detection_output = algo.get_output(1)# Display resultsdisplay(original_image_output.get_image_with_graphics(text_detection_output))
☀️ Use with Ikomia Studio
Ikomia Studio offers a friendly UI with the same features as the API.
-
If you haven't started using Ikomia Studio yet, download and install it from this page.
-
For additional guidance on getting started with Ikomia Studio, check out this blog post.
📝 Set algorithm parameters
- model_name (str, default="dbnet"): pre-trained model name.
- cfg (str, default="dbnet_resnet18_fpnc_1200e_icdar2015.py"): config of the pretrained model.
- cuda (bool, default=True): CUDA acceleration if True, run on CPU otherwise.
- config_file (str, default=""): path to model config file (.py). Only for custom model.
- model_weight_file (str, default=""): path to model weights file (.pt). Only for custom model.
To run a specific pretrained model, fill model_name and cfg. To run a custom model, for example trained with train_mmlab_text_detection, fill config_file and model_weight_file
Note: parameter key and value should be in string format when added to the dictionary.
from ikomia.dataprocess.workflow import Workflowfrom ikomia.utils.displayIO import display# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_mmlab_text_detection", auto_connect=True)algo.set_parameters({"model_name": "dbnetpp","cfg": "dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015","cuda": "True"})# Run on your imagewf.run_on(url="https://discuss.poynt.net/uploads/default/original/2X/6/60c4199364474569561cba359d486e6c69ae8cba.jpeg")# Get resultsoriginal_image_output = algo.get_output(0)text_detection_output = algo.get_output(1)# Display resultsdisplay(original_image_output.get_image_with_graphics(text_detection_output))
To know what are all the available pairs (model_name, cfg), run this code snippet.
from ikomia.dataprocess.workflow import Workflow# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_mmlab_text_detection", auto_connect=True)# Get possible parameterspossible_parameters = algo.get_model_zoo()# Print themprint(possible_parameters)# You can use one of them to choose your pretrain, here the first in the listalgo.set_parameters(possible_parameters[0])# Then run on your image...
🔍 Explore algorithm outputs
Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.
from ikomia.dataprocess.workflow import Workflow# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_mmlab_text_detection", auto_connect=True)# Run on your imagewf.run_on(url="https://discuss.poynt.net/uploads/default/original/2X/6/60c4199364474569561cba359d486e6c69ae8cba.jpeg")# Iterate over outputsfor output in algo.get_outputs():# Print informationprint(output)# Export it to JSONoutput.to_json()
Developer
Ikomia
License
Apache License 2.0
A permissive license whose main conditions require preservation of copyright and license notices. Contributors provide an express grant of patent rights. Licensed works, modifications, and larger works may be distributed under different terms and without source code.
Permissions | Conditions | Limitations |
---|---|---|
Commercial use | License and copyright notice | Trademark use |
Modification | State changes | Liability |
Distribution | Warranty | |
Patent use | ||
Private use |
This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.