infer_detectron2_keypoints
About
Inference for Detectron2 keypoint models
Run keypoints detection models from Detectron2 framework.
🚀 Use with Ikomia API
1. Install Ikomia API
We strongly recommend using a virtual environment. If you're not sure where to start, we offer a tutorial here.
pip install ikomia
2. Create your workflow
from ikomia.dataprocess.workflow import Workflowfrom ikomia.utils.displayIO import display# Init your workflowwf = Workflow()# Add keypoints detection algorithmkeypts_detector = wf.add_task(name="infer_detectron2_keypoints", auto_connect=True)# Run the workflow on imagewf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_detectron2_keypoints/main/images/rugby.jpg")# Display resultdisplay(keypts_detector.get_image_with_graphics(), title="Detectron2 keypoints")
☀️ Use with Ikomia Studio
Ikomia Studio offers a friendly UI with the same features as the API.
-
If you haven't started using Ikomia Studio yet, download and install it from this page.
-
For additional guidance on getting started with Ikomia Studio, check out this blog post.
📝 Set algorithm parameters
from ikomia.dataprocess.workflow import Workflow# Init your workflowwf = Workflow()# Add algorithmalgo = wf.add_task(name="infer_detectron2_keypoints", auto_connect=True)algo.set_parameters({"model_name": "COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x","conf_det_thres": "0.5","conf_kp_thres": "0.05","cuda": "True","use_custom_model": "False","config_file": "","model_weight_file": "",})# Run the workflow on imagewf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_detectron2_keypoints/main/images/rugby.jpg")
- model_name (str, default="COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x"): pre-trained model name. Choose one on the list below:
- COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x
- COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x
- COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x
- COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x
- conf_det_thres (float, default=0.5): object detection confidence.
- conf_kp_thres (float, default=0.05): keypoints detection confidence.
- cuda (bool, default=True): CUDA acceleration if True, run on CPU otherwise.
- use_custom_model (bool, default=False): flag to enable the custom train model choice.
- config_file (str, default=""): path to model config file (.yaml). Only for custom model.
- model_weight_file (str, default=""): path to model weights file (.pt). Only for custom model.
Note: parameter key and value should be in string format when added to the dictionary.
🔍 Explore algorithm outputs
Every algorithm produces specific outputs, yet they can be explored them the same way using the Ikomia API. For a more in-depth understanding of managing algorithm outputs, please refer to the documentation.
from ikomia.dataprocess.workflow import Workflow# Init your workflowwf = Workflow()# Add keypoints detection algorithmkeypts_detector = wf.add_task(name="infer_detectron2_keypoints", auto_connect=True)# Run the workflow on imagewf.run_on(url="https://raw.githubusercontent.com/Ikomia-hub/infer_detectron2_keypoints/main/images/rugby.jpg")# Iterate over outputsfor output in keypts_detector.get_outputs():# Print informationprint(output)# Export it to JSONoutput.to_json()
Detectron2 keypoints detection algorithm generates 2 outputs:
- Forwaded original image (CImageIO)
- Keypoints detection output (CKeypointsIO)
Developer
Ikomia
License
Apache License 2.0
A permissive license whose main conditions require preservation of copyright and license notices. Contributors provide an express grant of patent rights. Licensed works, modifications, and larger works may be distributed under different terms and without source code.
Permissions | Conditions | Limitations |
---|---|---|
Commercial use | License and copyright notice | Trademark use |
Modification | State changes | Liability |
Distribution | Warranty | |
Patent use | ||
Private use |
This is not legal advice: this description is for informational purposes only and does not constitute the license itself. Provided by choosealicense.com.